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Density gradients modify the flow and hence the shear dispersion of one miscible fluid 
in another. A solution procedure is given for calculating the effects of weak buoyancy 
for vertical laminar parallel shear flows. A particular extrapolation to large 
buoyancy gives an exactly solvable nonlinear diffusion equation. For the particular 
case of vertical plane Poiseuille flow explicit formulae are derived for the flow, for the 
nonlinear shear dispersion coefficient and for the onset of instability. The exactly 
solvable model gives reasonably accurate results for the buoyancy-modified shear 
dispersion over a range from half to one-and-a-half times the non-buoyant value. 

1. Introduction 
Long (1991) describes a series of elegant laboratory experiments involving the 

upwards miscible displacement of a Newtonian fluid by a denser Newtonian fluid in 
a narrow vertical annulus. The purpose of his experiments was to quantify and to 
give detailed flow visualizations for some of the flow phenomena encountered in the 
final stages of drilling an oil well when the narrow region outside the steel casing is 
flushed clear of drilling fluid and then the cleaning fluid is in turn displaced from 
below by cement. A laboratory experiment of height 3 m cannot easily encompass 
the full range of flow conditions that can arise in a borehole of depth 6 km or even 
more. Fortunately, the opposite extreme when the zone of mixing has become very 
long, lends itself to mathematical analysis. 

In  one of the most cited papers in the entire subject of fluid mechanics, Taylor 
(1953) showed that the eventual evolution of dilute solute concentration in a flow is 
longitudinal and diffusive : 

~ , F + ~ O ~ ~ F - [ [ K + D , ~ ~ ; F =  0. (1 .1)  

Here c is the solute concentration, w is the longitudinal velocity, K is the longitudinal 
molecular (or turbulent) diffusivity and Do is the shear dispersion coefficient. The 
overbars denote average values across the flow. 

Even at high dilution it is difficult to avoid the effects of buoyancy. For horizontal 
flows Erdogan & Chatwin (1967) showed how to calculate the coefficient D, of the 
quadratic buoyancy correction Do +D,(a, c)' to the shear dispersion coefficient. The 
present paper deals with the somewhat simpler case of vertical flows. It is shown that 
the leading-order buoyancy correction takes the linear form Do +D, az C. The 
coefficient D, is calculated for a few flow geometries and a general formula is also 
derived. For z increasing upwards, the coefficient D,  is positive if the solute increases 
the density. 

In the context of flow in porous media Knight & Philip (1974) pointed out the 
desirability of exactly solvable nonlinear problems. They derived the two-parameter 
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class of concentration-dependent diffusivities that can be solved by a linearizing 
transformation. The corresponding exactly solvable equation with gradient- 
dependent diffusion is 

This is compatible with the leading-order buoyancy correction Do +D,  a, F if the 
coefficients y and D, are related: 

To test the range of accuracy of the model equation (1.2) an explicit solution is 
derived for the full nonlinear dependence D(a, of the shear dispersion coefficient for 
vertical plane Poiseuille flow. In  the Appendix to this paper it is shown that when 
there is a strong unstable density gradient the flow becomes unstable (well before the 
approximate or exact expressions for D(a, Ej exhibit any singularities). Nevertheless, 
prior to the instability the exactly solvable model gives reasonably accurate results 
for the buoyancy-modified shear dispersion coefficient. 

2. Moving stretched coordinates 
For simplicity we shall assume that the flow geometry is the same at all levels and 

that we can make the Boussinesq approximation (i.e. buoyancy effects are important 
but inertia changes are negligible). Thus, the cross-sectionally averaged longitudinal 
velocity w will be independent of longitudinal position z .  (Buoyancy will affect the 
velocity profile but not the averaged flow.) We shall also assume that the flow can 
be modelled as if it  were steady and laminar. The possibility of flow instability is 
addressed in the Appendix. 

In  the Taylor limit the mixing zone between the miscible Newtonian fluids has 
become greatly elongated and evolves very slowly as it is carried upwards at  the 
mean velocity W. To account explicitly for these features we introduce a small 
parameter 8 which typifies the width-to-length aspect ratio of the mixing region. In  
terms of 8 we replace the conventional longitudinal and time coordinates ( z ,  t )  by the 
moving stretched coordinates 

5 = €@-at), 7 = €9. (2.1 a, b )  

If the Cartesian velocity components for nearly longitudinal flow are (BU, w, w) then, 
with density changes neglected, the conservation of mass equation takes the form 

a,u+a,v+acw = 0. (2.2) 

The flow geometry will be characterized as being a zero contour of a function 
Q ( x ,  y). The condition for zero mass flux across the boundary is 

ua,sZ+va,sE=O on Q = O .  (2.3) 

For a viscous fluid the velocity components u, v are separately zero on a stationary 
solid boundary. 

The cross-sectional average of (2.2) gives the result 

a p  = 0. 
as has been assumed already. 
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3. Taylor limit 

miscible fluid in the other satisfies the equation 
For isotropic molecular diffusion the concentration fraction c(z, y ; 6 , 7 )  of one 

E [ E a , c  +u a, c+va,  C+ (w- tq a , ~ ]  = a,(K a, C) + a , ( K a , C )  +s2 a,(Ka,c). (3.1) 

Since we are not restricting our attention to dilute concentrations, the diffusivity K 

may be a function of the concentration c. Changes in the surrounding bed-rock 
temperature as the mixing zone rises might also give 7-dependence to K .  The 
condition for zero diffusive flux across the impermeable boundary is 

K V ~ C - V ~ S Z = O  on S Z = O ,  (3.2) 

where V ,  denotes the horizontal gradient operator (a,, aU). The mass flux boundary 
condition (2.3) already ensures that there is zero advective flux of concentration 
across the boundary. For turbulent flows an eddy diffusivity would replace the 
molecular diffusivity . 

A t  leading order in the small parameter 6 the concentration becomes uniform 
across the flow: 

c =  q ~ 7 ) - e f ( z , Y ;  c , 7 ) a c F +  .... (3.3) 

Thus, to a first approximation the concentration-dependent diffusivity K is likewise 
constant across the flow. The function f is called the centroid displacement function 
and gives the relative longitudinal position of constant-concentration surfaces (i.e. 
the displacement from the centroid). The equations and boundary conditions 
satisfied by f are 

K T L f  = a-W, (3 .4a)  

with V , f . V , Q = O  on S Z = O  (3.46) 

and f= 0. (3.4c) 

Since the velocity profile w is buoyancy-modified and depends upon the concen- 
tration gradient aSc7 the same will be true of the centroid displacement 
function f. 

If we average the concentration evolution equation (3.1) across the flow, then by 
virtue of the near uniformity of the concentration and the conservation of mass, we 
find that the order-1 and order-e terms integrate to zero. The remaining order4  
terms yield the Taylor shear dispersion equation 

a,c-a,([~+~la,q = 0, (3 .5u)  , 

where D = (W-ZB) f = K(VHf12.  (3.5b) 

Back in the original stationary z ,  t coordinates the evolution equation for F becomes 

(3 .6)  

Taylor (1953) was concerned with dilute solutes where the velocity profile w, centroid 
displacement f and shear dispersion coefficient D are unaffected by buoyancy. Here 
it is the buoyancy modifications that are of prime concern. 

If we sought to replicate the work of Erdogan & Chatwin (1967), then we would 
have to allow all three velocity components (u, v, w) to be of the same order (i.e. 
strong gravitational forces across the principal flow direction gives rise to strong 
secondary flows). The equation ( 3 . 4 ~ )  for the centroid displacement function f would 
then have to include secondary flow advection terms ua, f + w a y  f. Similar strong 

a, C+ m a2 F- a , ( [ K + q a ,  q] a, q = 0. 
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advection terms would complicate the calculation of the longitudinal velocity w as 
modified by buoyancy. Fortunately, the formula (3.5b) for the shear dispersion 
coefficient D remains valid. 

If a is a representative transverse lengthscale for the flow, then we can deduce from 
(3.4~) that the centroid displacement function f scales as 

(3.7) 

where F is a dimensionless function. Using this representation in (3.5b) we can 
replicate Taylor's (1953) celebrated scaling law for the shear dispersion coefficient : 

&a2 

K 
D = - d ,  with d = a2 (V,F)2 (3.8 a, b)  

where d is a dimensionless numerical factor. 

4. Buoyancy-modified longitudinal velocity 
For flows to which the Boussinesq approximation is applicable, the density p does 

not depart far from a reference density po. In the mixing zone the perturbation 
density dfi will be a function of the concentration fraction c and may also vary with 
7 (via pressure or temperature changes) : 

p = po+€p@(c,7) .  (4.1) 
The exponent /3 merely serves as a reminder that the density perturbation is small. 
The non-uniformity in concentration across the flow will give rise to a density non- 
uniformity : 

(4.2) 
p = p o + ~ p f i ( ~ , 7 ) - - l + p + f ( 5 , Y ;  g,7)ca5c+.... a@ - 

To a first approximation the pressure in the fluid mixture will be the (very large) 
hydrostatic pressure associated with the cross-sectionally averaged density 
po+dfi(c, 7 ) .  For the dynamic excess pressure e-'p and velocity components (eu, ew, w) 
the dominant terms in the Navier-Stokes momentum equations are 

v , p  = 0, (4.34 

(4.3b) 

with w = O  on Q = O ,  (4.3c) 
and given. (4.34 
Here e-l-pg is the downwards gravitational acceleration and j i  = p(c, 7 )  is the 
viscosity. The large weighting given to the excess pressure is a consequence of the 
large pressure drop needed to drive a flow over distances the size of the mixing region. 
The large weighting given to gravity is necessary if the buoyancy forces are to have 
a leading-order influence upon the longitudinal velocity profile. For turbulent flows 
an eddy viscosity would replace the laminar viscosity. 

To quantify the magnitude of the buoyancy correction we introduce the 
dimensionless density gradient 

(4.4) 
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G is positive when the density gradient is stable (i.e. decreasing upwards). The 
dimensionless counterpart to the coupled equations (4.3), (3.4) for w and f are 

with 

a2V& W = -P+GF, 
a2V& F = 1 - W ,  

O =  W = V H F - V H Q  on Q = O ,  

w=1 and P = O .  

(4.5a) 
(4.5b) 

(4.5c) 

(4.5d, e )  

The dimensionless pressure gradient P(G)  is implicitly determined via the mass- 
flux constraint (4.5d) upon the buoyancy-modified velocity profile. A neat general 
result is 

P = a2 ( V ,  W)2 + Gd. (4.6) 
Even though we have already accounted for the hydrostatic pressure, we infer that 
the pressure gradient needed to drive the upwards flow is increased when there is a 
stable density gradient (G positive). A typical wavenumber across the flow would be 
x/u. So a value G = x4 ( =  97.4) would not be deemed large. Alas, the Appendix 
reveals that gravitation instability arises for the small value G = -31. 

For Long’s (1991) experiments the gap width 2a was 2.5 mm and the diffusivities 
for salt in water and for momentum had the approximate values 

2 - mm2 s-l, j i /p - 1 mm2 s-l. (4.7) 
For experiments with a density change of only one part per thousand over a vertical 
distance of 100 mm, the corresponding dimensionless density gradient is 

G - 250. (4.8) 
Thus, the flow would be modified significantly by the effects of buoyancy. Long’s 
(1991) experiments extended to density changes as large as 4% where the scalings 
used in the present paper are not pertinent. However, the Reynolds number of the 
flows ranged up to several thousand for which the flow would cease to be laminar. 
The much larger turbulent estimates for K and j i  would greatly reduce the estimate 
of the dimensionless density gradient G down to values to which the present 
calculations are appropriate. 

For oil wells the gap width could be a factor of ten larger, with G increased by a 
factor of lo4. Thus, the present analysis would only be pertinent to turbulent flows. 
For example, with 

(4.9) 

and a change of density of 1 YO over a vertical distance of lo3 mm, we obtain the 

G - 15. (4.10) estimate 

Slower turbulent flows give smaller eddy viscosities and diffusitivies with larger 
values of the dimensionless density gradient. 

2a = 25 mm, iij = 100 mm s-l, E - K - 12.5 mm2 s-l 
P 

5. Power series in buoyancy 
For small dimensionless density gradient G (less than x4) we can represent the 

velocity profile, pressure gradient and centroid displacement function as being small 
perturbations about non-buoyant flow : 

W =  W , ( X , ~ ) + G W , ( X , ~ ) +  ..., P=Po+GPl+ ..., F = F o ( ~ , y ) + G F l ( ~ , y ) +  .... 
(5 . la ,  b )  
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The leading-order equations are 

a2V& W, = -Po, ( 5 . 2 ~ )  

a2V& Fa = 1 - W,, (5.2b) 

0 = W, = V,F,.V,Q on D = 0, ( 5 . 2 ~ )  

w, = 1, Fa = 0. (5.2d, e) 
- 

The dimensionless leading-order shear dispersion coefficient do has the positive value 

do = az(V,F,)2. (5.3) 

The first-order correction terms satisfy the equations 

a2V& W, = -P,+F,, 

a2V& F, = - W,, 
0 = W, = V,F,-V, 52 on SZ = 0, 

0 = w, = P,.  

( 5 . 4 ~ )  

(5.4b) 

(5.44 

(5.44 

A simple consequence of these equations (or equivalently of the general result (4.6)) 
is that 

P, = a,. (5 .5)  

The dimensionless first-order shear dispersion coefficient d, has the negative value 

(5.6) 

Hence, stable concentration gradients tend to decrease the longitudinal shear 
dispersion. 

For plane Poiseuille flow between parallel plates 2a apart the leading-order 
solutions are 

dl = 2a2VHFo-VHFl = -2a2(V, Wl)2. 

w-- ,- ;{ I-- $}, G = 3 ,  

2 "} - 105 - 120 { a2 a 4  
F -- 7-30-+15-, Y2 d --, 

(5.7a, b) 

(5.7c,d) 

where y is the distance from the mid-line. The first-order buoyancy corrections are 

( 5 . 8 ~ )  

52 d 
- 363825 * 

( 5 . 8 ~ )  

At the centre of the flow (y = 0) the functions W, and F, are both negative. So stable 
density gradients (G positive) tend to flatten the velocity and centroid displacement 
profiles (i.e. the flow adjusts to reduce the amount of dense fluid conveyed a 
relatively long way upwards). We remark that plane Poiseuille flow is a good 
approximation to the majority of Long's (1991) experiments which involved narrow- 
gap flows between concentric cylinders. 
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In terms of the original (unsealed) z, t coordinates the two-term approximation for 
the shear dispersion coefficients is 

(5 .9c)  

= Do +D, 3, F+ . . . (5.9b) 

If the diffusivity Z, viscosity p and the rate of density increase C../acare independent 
of the concentration F, then the coefficients Do and D, will likewise be independent 
of F. If the density p increases with the solute concentration F then D,  is positive (by 
virtue of d ,  being negative), i.e. 

(5.10) 

For other flow geometries we can itemize the steps in the solution procedure: 

velocity profile Wo(x, y )  ; 

function Fo(x, y) ; 

dispersion coefficient do = PI ; 

velocity profile ; 

correction d to the shear dispersion coefficient. 

(1) solve the Poisson equation ( 5 . 2 ~ )  for the non-buoyant pressure gradient Po and 

(ii) solve the Poisson equation (5.2 b)  for the non-buoyant centroid displacement 

(ii) Perform the cross-sectional averaging (5.3) to evaluate the non-buoyant shear 

(iv) solve the Poisson equation ( 5 . 4 ~ )  for the buoyancy correction W,(x, y )  to the 

(v) perform the cross-sectional averaging (5.6) to evaluate the (negative) buoyancy 

For laminar flow in a cylindrical vertical pipe these five steps give the results 

(ii) 

Po = 8, Wo = 2  1-- , { :} 

(iii) do = P, = &, 

w -  ' {* r 4 }  2:8{ I--  :}¶ 

- 64 a2 a4 

(v) d ,  = - (1 + &)/576, 

where r is the radial coordinate and a the pipe radius. The non-buoyant results 
(i)-(iii) replicate the well-known solutions given by Taylor (1953). 

6. Exactly solvable nonlinear diffusion equation 
If we replace the concentration F by the slope 

s = a,a (6.1) 

as the dependent variable, then the nonlinear diffusion equation (3.6) for F ( Z ,  t )  with 
gradient-dependent diffusivity [K+D(a, E ) ]  is equivalent to the equation 

ai 9 +ma,  s - a 2 ( [ R + ~ + s  a , ~ ]  a, 8) = 0, (6.2) 
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FIGURE 1 .  The effect of nonlinearity upon the shape of a concentration surge. 

with s-dependent diffusivity. Knight & Philip (1974) showed that an exact linearizing 
transformation is possible if and only if (6.2) takes the form 

The combination [K+D,]  is the limiting linear diffusivity and the parameter y 
quantifies the nonlinearity. Thus, we can infer that the original equation (3.6) for 
q z ,  t )  has an exact linearizing transformation if and only if the gradient-dependent 
takes the form 

As noted in the introduction, the two-term approximation (5.9b) for the gradient- 
dependent shear dispersion coefficient is compatible with the exactly solvable model 
provided that the parameter y has the value 

-D1 Y =R+DO. 
In the usual limit, in which shear dispersion Do greatly dominates molecular diffusion 
K, we can evaluate y :  

If the density increases with increasing concentration c, then y is positive (because 
d,  is negative). 

For the exactly solvable nonlinear diffusion equation (1.2) the exact linearizing 
transformation merely involves a change of coordinate from z to 

z = z + yqz, t ) .  (6.7) 
In  terms of the auxiliary coordinate 2 the concentration ~ ( 2 , t )  satisfies the linear 
diffusion equation (1.1).  From a solution q Z ,  t )  of the linear equation (1 .1)  we can 
construct a solution q z ,  t )  of the nonlinear equation (1.2) merely by a coordinate 
distortion : 

Figure 1 shows the relative shapes of concentration profiles for a range of y-values. 
A necessary condition for the forwards transformation (6.7) to be single valued is 

z = z-yqz, t ) .  (6.8) 

that 
( 6 . 9 ~ )  
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and for the backwards transformation (6.8) the corresponding constraint is 

ya,c< 1. (6.9b) 

Outside this regime the model equation (1.2) is ill-posed and is violently unstable. 
The Appendix to this paper reveals that the flow has already become unstable before 
this condition ( 6 . 9 ~ )  is violated. 

For the nonlinear diffusion equation (3.6) a small perturbation R satisfies the 
linear equation (cf. (6.2)) 

(6.10) 

A necessary condition for well-posedness and stability is that K+ a,(&) be positive. 
It is this condition that is violated outside the region defined by the constraint ( 6 . 9 ~ ) .  

a, &+ a, &- a,([K + a,(so)l a, 6 ~ )  = 0. 

7. Buoyancy-modified vertical plane Poiseuille flow 
For vertical laminar flow between parallel plates it is possible to derive an explicit 

solution for the dimensionless velocity profile W(y/a ; G) and hence the dimensionless 
shear dispersion coefficient d(G) .  

If we eliminate the dimensionless centroid displacement function F(y/a ; G), then 
( 4 . 5 ~  b) can be combined to give a fourth-order linear ordinary differential equation 
for W(y/a ; G) : 

d4W 
-+GW = G, with Y = y/a. 
dY4 

( 7 . 1 ~  b) 

In the unstable case (G negative) we define the real parameter 

A = (-G)a, (7.2) 
and we represent the symmetric velocity profile : 

(sin A cosh A Y - sinh A cos A Y )  
(sin A cosh A - sinh A cos A )  

w =  1- ' (7.3) 

In the stable case (G positive) we define the real parameter 

1 = (+G)i, (7.4) 
and we represent the symmetric velocity profile : 

w =  l +  
(cosh 1 sin 1 -sinh 1 cos I )  cosh 1Y cos 1Y- (cosh lsin 1 + sinh 1 cos 1) sinh 1Y sin 1Y 

cosh 1 sinh I - cos 1 sin 1 

(7.5) 
Figure 2 (a)  shows these velocity profiles for several values of G.  In the unstable case 
there is flow reversal at  

A = x ,  i.e. G = -x4 = -97.4 (7.6) 

tan A = tanhli, i.e. A = 3.9266, G = -237.7. (7.7) 

Wo+GW,. (7.8) 

and a singularity when A reaches the first non-zero root of the transcendental 
equation 

Figure 2 (b)  gives tests at  the comparatively large values G = - 100, 100 of the small- 
G approximation 

13 FLU 242 
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G=-100 

Position y + 

FIQURE 2. (a) The velocity profile for buoyancy-modified vertical plane Poiseuille flow. The 
parameter G = - a * g a , p / ~ p  is positive when the density gradient is stable. (b)  Comparison between 
the exact and weak buoyancy approximations (+ + + ) to the velocity profile for vertical plane 
Poiseuille flow with CJ = - 100,100. 
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FIQURE 3. (a) The dimensionless centroid displacement function for buoyancy-modified vertical 
plane Poiseuille flow. (6) Comparison between the exact and weak buoyancy approximations 
( + + + ) to the centroid displacement function for vertical plane Poiseuille flow with Q = - 100,100. 

From the solutions (7 .3) ,  (7 .5)  for the dimensionless velocity profile, it is 
straightforward to solve (4.5 b )  for the dimensionless centroid displacement function : 

Asin A cosh A Y f  A sinh A COB AY-2 sin A sinh A 
A3  (sinh A cosh A - sinh A cos A )  , 

(sinh2Z+sin21-p(coshZsinZ+coslsinh 1 )  coshlYcosZY 

F =  (7.9a) 

- l(cosh 1 sin 1 - cos 1 sinh 1)  sinh 1Y sin 1Y F =  . (7 .9b)  
213(cosh 1 sinh 1 - cos 1 sin 1) 

Figure 3 (a) shows the centroid displacement function for the same values of G used 
to illustrate the velocity profiles. There are the same general features of flattening 

13-2 



382 

0 

R. Smith 

8 ' I I ,  ' 8 I ,  I I 1  1 I-- 0 

when the density gradient is stable and a sharpening for unstable density gradients. 
Figure 3 ( 6 )  gives tests at  G = - 100, 100 of the small-G approximation 

Fo + GFl. (7.10) 

To determine the dimensionless shear dispersion coefficient d we merely need to 
evaluate the integral (3.8b) : 

d =  , (7.11u) 
211 (cosh 2A + cos 2A - 2) + (cosh 2A - 1 )  sin 2A - (1  - cos 2A) sinh 2A 

8A3(sin A cosh A - sinh A cos A)2  

sinh 21 cosh 21 + sin 21 cos 21 - cosh 21 sin 21 - sinh 21 cos 21 - 41( 1 - cosh 21 cos 21) 
8P (sinh 21 - sin 21)2 

d =  

(7.11b) 

We remark that to the right of the singularity at G = -237.7 the flux Gd(G)  is an 
increasing function. Hence, away from the singularity the nonlinear shear dispersion 
equation is well-posed. However, the stability calculation given in the Appendix 
shows that the solution is physically relevant only for G greater than -31. 

Figure 4 compares the exact results ( 7 . 1 1 ~  6 )  with the simple approximation: 

R 
P 

d =  for -133&< G. 
105 + g G  (7.12) 

For strongly unstable density gradients the approximation (7.12) wrongly predicts 
the position of the singularity and gives no indication of there being flow instability 
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for G less than -31. However, the approximation is reasonably accurate for values 
of d ranging from half to one-and-a-half times the non-buoyant do. 

I wish to thank Peter Long for his boundless enthusiasm and beautiful 
experiments. The need for the stability calculation was pointed out by the referees. 

Appendix. Gravitational instability between parallel vertical plates 
The calculations presented in the above paper cease to be valid if the flow is 

unstable. This Appendix investigates the stability of the particular case, studied in 
$7, of a Boussinesq fluid between parallel vertical plates. A simple instability 
criterion is derived for disturbances with long vertical lengthscale. The analysis is a 
miscible-fluid counterpart to long-wave instability calculations for immiscible fluids 
presented by Lister (1987) and by Smith (1989). 

In the above paper it is assumed that the mixing zone is of great longitudinal 
extent. So, on a shorter lengthscale comparable with the plate separation 2a, the 
unperturbed density distribution and flow can be represented : 

dp a2mdp 
dz K dz p = p(o)+z--Y---P(y)+ ..., w = mW(y), 

As shown explicitly in $7,  the y-dependence of the dimensionless centroid 
displacement function F(y) and velocity profile W(y) depend upon the local 
dimensionless density gradient 

If we now give a two-dimensional perturbation to this slowly varying flow, then the 
velocity perturbations v', w' can be represented in terms of a perturbation stream 
function $': 

The coupled equations satisfied by @' and the perturbation density p' are 

vf = -a,y, wf = auy. (A 3% b )  

with v = a u $ ' = a l / p ' = O  on y = f a .  (A 4 4  

All quadratic and higher-order nonlinearities in the perturbation quantities p', $' 
have been ignored on the assumption that the perturbation is initially very small. 

Since dp/& varies slowly with respect to z and t ,  we can investigate the local 
stability of the perturbation y ,  p' as if all the coefficients in (A 4a, b) were 
independent of z and t .  In  particular, we can consider a single Fourier component 

yk' = EY( y) exp (iazla + pd/po as) ,  (A 5 4  

(A 5 b )  

Y = y/a. (A 5 c )  

p' = a - dP @( y) exp (iazla + pd/p,  a2), 
dz 

where 
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Here Y is a dimensionless cross-stream coordinate, a is the dimensionless vertical 
wavenumber and u is the dimensionless complex exponential growth rate. The 
coupled equations satisfied by the complex dimensionless functions Y( Y), @( Y) are 

(u+iRea(W-1)) Y-iRea-Y- --az Y = G--, d@ (A6a)  
d2W d P  (:A )" dY 

m (:; ) dY dY 
+iPrRea-Y-, (A6b) 

d Y  
Pr(cr+iRea(W-1))@- --a2 @ = -- 

and Pr =-- P 
dY dY P P o K  

= 0 on Y = k l ;  where Re =- 
d Y  d@ with y = - = -  

(A 6c-e) 

Here Re is the Reynolds number and P r  is the Prandtl number. The condition for 
instability is that for some real value of the dimensionless vertical wavenumber a 
there is an eigenvalue u for the time-dependence that has positive real part 
(exponential growth). 

These formidable equations (A 6a-e) encompass the possibilities of instabilities 
associated with the density gradient dp/dz, with the velocity profile W(Y) or with 
both effects together (Drazin & Reid 1981, ch. 2, 4, 6). A limiting case in which the 
equations become tractable is when the vertical wavenumber a is zero : 

If we multiply (A 7 a )  by the complex conjugate Y* of Y and we multiply the 
complex conjugate of (A 7 b)  by G@-, then by repeated integration by parts across the 
gap between the plates we can derive the identity 

The individual integrands are all real and positive. For G positive we can deduce that 
the real part of u is negative, i.e. that  the perturbation is stable. Conversely, for C 
negative we can deduce that the imaginary part of u is zero. So, as G decreases away 
from zero the transition between stability and instability occurs with u = 0. 

For symmetric disturbances the eigenmodes for marginal stability (cr = 0) have 
the explicit form 

coshAY cosAY +- (A 9% b)  A@") = sinhAY sinAY 
y ( 0 )  = 

sinhA sinA ' sinhA sinA ' 

where tan A = tanh A and G'O) = - A4. (A 9c, 4 
The eigenvalue condition (A 9c) is precisely the singularity condition (7.7) 
encountered in the flow calculation. So the singularity in the nonlinear shear 
dispersion coefficient (7.1 1 a)  an be identified with the onset of symmetric 
instabilities. 

For antisymmetric disturbances the eigenmodes for marginal stability (a = 0) 
have the representations 

sinhAY sinAY coshAY cosAY 
y(0, = -- 

coshA COSA ' coshA cosA ' 
A@@) = (A 10a, b )  
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with tanh A +  tan A = 0. (A 10c) 

The lowest non-trivial root for A is 

A = 2.365, i.e. G(O) = -31.28. (A 11) 

This antisymmetric instability (down at  one side and up at  the other) arises for a 
smaller density gradient dp/dz than that associated with symmetric disturbances. 
So, in practice the flows studied in this paper will have become unstable well before 
the singularity in the nonlinear shear dispersion coefficient can be approached. We 
remark that the instability criterion ( A  1 1 )  coincides with the velocity profile (7.3) 
first having an inflexion point (at the boundaries). 

In principle the circumstances in which the onset of instability is indeed associated 
with a = O  could be established by a long-wavelength solution confined to the 
marginal stability curve (with v imaginary) : 

v = iad1'+ia3d3)+ ..., G = -A4-a2G(2)-a4G(4)-. . . ,  ( A  12a, b )  

Y(Y; a) = !Po)(Y)+iaF1)(Y)+a2!P2)(Y)+ ..., (A 12c) 

@( Y; a) = @(O)( Y) + ia@(l)( Y) + a'@(')( Y )  + . . . , (A 12d) 

From (A 6u-e)  it is easy to verify that the au), G", !PI and @u) terms are all real. 
If the coefficient G(') could be shown to be positive for the lowest antisymmetric 
mode, then it would follow that long waves are more unstable than short waves. Alas, 
the complexity of ( A 6 a - e )  involving the velocity profile (7 .3) ,  the centroid 
displacement function (7.9a) as well as the eigenmodes ( A  10a, b )  has deterred the 
author from pursuing the general case. 

A limiting case in which the above wavenumber expansion can be performed 
relatively easily is when there is a zero vertical mean flow. At  order a2 the stability 
equations (A 6a-e)  yield the coupled equations 

with 

-- d4Y(2) +A4- d@(2) = -2A2 cosh A Y  cos AY + G(2) (cosh AY -- cos A Y )  
-2A'- 

dY4 dY cosh A cos A coshA cosA ' 
(A 13u) 

(A 13b) 
d2Qi(') dY(" - sinh A Y  sin A Y  -- +- - 
dY2 dY A c 0 s h A - a '  

(A 13c) 

If we multiply ( A  13a) by !Po) and (A 13b) by A4@(0), then by repeated integration 
by parts across the gap we can determine G(2) : 

cosh AY cos AY)' dY = 2A2 p (sinh AY sin AY)' dY 
coshA cosA -1 coshA cosA G ( ' ) l 1 (  -- +- 

Since the integrands in (A 14) are all positive it follows that G(') is positive. So, in this 
limiting case of zero vertical mean flow the gravitational instability is indeed 
associated with disturbances of long wavelength. 



R. Smith 
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